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Refractive index effects are examined for transient cooling by radiation and conduction of a gray semitrans-
parent layer. The layer is in a vacuum and so its heat loss is only by internal radiation leaving through its
boundaries. Emission within the layer and energy reflected internally from its boundaries increase with the
material refractive index. The reflected energy and heat conduction act to distribute energy across the layer
and partially equalize the transient temperature distributions. For some conditions significant temperature
gradients develop near the boundaries. The numerical solution method provides accurate transient temperature
distributions in these regions so that the predicted radiative losses are not in error. An implicit finite difference
procedure is used with nonuniform space and time increments. The integrals for the local radiative source in
the energy equation are evaluated by Gaussian integration.

Nomenclature

u = absorption coefficient of laver, m !

¢ = specific heat of radiating medium,
W Sx'kg ‘K

D = thickness of radiating layer. m

E,..... FE, = exponential integral functions

k = thermal conductivity of layer, W/m-K

N = conduction-radiation parameter, k/4oT:D

n = refractive index of layer

q = heat flux, W/m-

q = dimensionless heat flux g/o T}

q, = radiative heat flow per unit area and time,
Wim-

R = radiation source in energy equation

T = ubsolute temperature, K

T, = temperature of surrounding
environment, K

T, = initial temperature of radiating layer, K

T, = integrated mean temperature, K

t = dimensionless temperature. 7/T,

X = dimensionless coordinate, x/D

X = coordinate in direction across layer, m

€, = emittance of layer based on instantancous
value of T,

£, = emittance for a layer at uniform
temperature

0 = time. s

K = optical thickness of laver. «D

P = density of radiating medium, kg/'m*:
retlectivity at a surface

o = Stefan-Boltzmann constant. W/m=-K*

T = dimensionless time, (40T /pcD)8

Subscripts

a. b, e d interfaces of layer, Fig. 1

i = initial condition; the /th x location

M = the total number of X grid points
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Introduction

ERAMIC components and coatings are being developed

for high-temperature applications in aircraft and auto-
motive engines. The materials are often subjected to transient
thermal conditions and may be partially transparent for ra-
diative transfer. Radiative transport within the material acts
in combination with heat conduction. The local volume emis-
sion within a material depends on the square of its refractive
index. Since refractive indices for ceramics are in the ap-
proximate range trom 1.5 to 3, internal radiation fluxes can
be large and are strongly dependent on temperature level.
During a transient numerical solution, accurate instantancous
temperature distributions must be obtained or solution in-
accuracy will increase as time advances. Two operations are
required. The radiative contribution surrounding each loca-
tion must be integrated to obtain the local absorbed energy
within the medium: this was done with Gaussian integration.
The transient energy equation must then be solved using this
internal energy source that depends on position and time: an
implicit finite difference procedure was used with a nonuni-
form grid. Internal reflections have a large effect on the dis-
tribution of absorbed energy. The radiative boundary rela-
tions are developed to account for these reflections.

The steady and transient heat transter behavior of single
and multiple plane layer geometries has been examined in the
literature for a variety of situations.! 7 A common boundary
condition is to have the absorbing-emitting material contained
between walls with specified temperatures. In the present
situation the radiating layer is cooled by exposure to a cold
environment. and so the laver boundary temperatures are
unknown functions of time. The environment is either a vac-
uum, or external convection is small: hence. there is no means
to remove energy from the laver surfaces by external con-
vection or conduction. Since the layer is semitransparent,
radiant emission from within its interior passes out through
its boundaries. Energy is conducted to the surface. but cannot
be radiated exactly from the surface that has no volume. The
resulting conduction boundary conditions for the energy equa-
tion are a zero-temperature gradient at cach surface.

For an optically thick laver the radiative loss through a
boundary is mostly from the volume close to the surface. The
transient temperature gradient can become large near a
boundary. but must go to zero at the boundary. The radiative
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loss can be significantly in error if the temperatures near the
boundarv are inaccurate. The zero temperature gradient
boundary condition must be met by the numerical procedure.
If not, the solution will behave as if there is an additional
energy loss or gain at the boundary; this results in an accu-
mulative error in the overall heat balance during the transient
calculations.

In Ref. 5 a finite difference procedure was developed for
this type of transient for a material with a refractive index of
1. A nonuniform increment size was used to concentrate grid
points near the boundaries. This work is extended here to a
tayer with a refractive index larger than 1: this requires in-
cluding effects of internal reflections at the boundaries.

The temperature throughout the layer is initially uniform.
As the transient begins, the regions near the boundaries cool
rapidly. This reduces the radiative loss since, unless the layer
is optically thin. much of the loss is originating from the region
where temperature is reduced relative to the layer interior.
As cooling continues and the mean temperature decreases,
radiation is diminished and the relative effect of conduction
increases. Eventually this causes the temperature distribution
to become more uniform and emission approaches that of u
layer at uniform temperature.

Analysis
Energy Equation for Transient Cooling
A plane layer with thickness 12 (Fig. 1), is composed of a
gray emitting. absorbing, and nonscattering medium that is
heat-conducting and has a refractive index larger than 1. The
laver is initially at uniform temperature 7, and is then placed
in much cooler surroundings so that energy is lost by radiation.
The layer is in a vacuum, or external convection is small. so
that radiation is the only means for energy loss. The sur-
rounding temperature is low enough that radiation from the
surroundings to the layer is neglected.
The transient energy equation is"

aT o T iy,

C— = 1
a6 ax- ax )
where the gradient of the radiative flux is given by®
g, ,
— = dn-aoTHx. 68)
ax
- 2u {(14,_,,E3((L\‘) + g, Esja(D — x|
n l
+ nca ( oTHx* OE (alx™ — x]) dx* j (2)

The g, and g,, arc the diffuse fluxes in Fig. 1 that are
outgoing from the internal boundaries as a result of surface
reflections. Thermal properties are assumed independent of
temperature.

For convenience. a dimensionless quantity R(X. 7} is de-
fined as R(X. 1) = (6¢4,/0.X ), and so from Eq. (2) in dimen-
sionless form

R(X.7) =kt (X. 1)

Kp
2

{c}“,,(T)E:(K,,X) + ., ATV [k, (1 - X))

X" - X

1
+ nzx,,J' rX*, 1YE (x, y dX™ (3)

The dimensionless energy equation is then

ot - N a-t
a7 &

- R(X. 1) (4)

a, k
nz1

/ b Qi.e

I BN [T g
~ Qo,b Qo.c
_ 7 P
Po ~. 1. Pe —\ /'_ Pa
T(x.0)
T, << T(x.8) T, << 7(x.8)
| =
e — D) ——————]

x=0 x=D

Fig. 1 Geometry, boundary conditions, and nomenclature for plane
layer.

Initial and Boundary Conditions

Initially. the fayer is at uniform temperature. and so (X,
0) = I. Boundury conditions must be provided for heat con-
duction and radiation. Radiation passes out of the layer from
within its volumes: it is not emitted from the surface itself that
has no volume. Then, for a low convection or vacuum envi-
ronment. no energy is leaving from the planes of the surfaces.
and the conduction boundary condition is 0r#dX — at X' —
0 and 1 for all .

The radiation boundary conditions are developed in a man-
ner similar to Ref. 9 where steady-state temperatures were
obtained for a heated layer with n > 1. The boundary con-
ditions provide the fluxes ¢, , and ¢,,, in Eq. (3). Using the
interface reflectivities. g,,,, = pug, . and g, = p.q,, (see Fig.
1). The incident fluxes §,, and ¢,, are obtained from the
energy reflected from the opposite boundary and attenuated
through the laver. and from energy emission within the layer.
These energy quantities are obtained from the radiative flux
equation that is the integral of Eq. (2). As detailed in Ref. 9
the ¢, , and ¢,., arc given by

CA7)y + ACAT)

] = Sa
q.,.:(7) I~ AA (5a)
CAr) + A C(7) _
g...(7) I AA
where
A, = 2pdidk,,) (5¢)
A= 2p Edxy) (5d)

i1
C(7) = 2n'puky, , X T (kX)) dX (5¢)

"1
Ci7) = 2II:[)‘K,,J PHXL TR KL

~ X)X (50)

Although this formulation is general. for the speaific com-
putations in this article symmetry gives A, = A ., =
and ¢, — q.,..

The numerical solution vields transient temperature distri-
butions. Some guantities of interest are the transient mean
temperature, the instantaneous heat loss, and the transient
emittance of the laver. The instantaneous mean temperature
is obtained from

] I3
T e = B { T(x. 8) dv
(6)

L) — J HX, 7)dX
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The instantaneous radiative flux leaving both sides of the layer
isequal to (1 — pg,., + (1 — pg,. = [(1 = pVp)g., +
{1 = p)iplq... Using Egs. (5a) and (5b), this yields

1l —p, C + A,
I - A/A(

Gouw t o ; ;
=4,. Y 4,4 =
ol [

1 -p C. + AC,
po 1= AA

+ (N

To define a transient emittance the instantaneous mean
temperature is chosen as a meaningful characteristic temper-
ature. The instantaneous heat dissipation from both sides of
the layer is then 2¢,(6)a T} (8), so that

q..7) + q,.,7)
23 (1)

"

£,(1) = (8a)

To check numerical accuracy the ¢,,(7) is obtained by a second
method. The local temperature derivative with time is ob-
tained during the numerical solution from the finite difference
representation of Eq. (4). Then the emittance is found from

the energy balance 2¢,,(8)oT}(8) = —pcD dT,/d6. This
vields
pc J‘“ oT 2 J“ at
A7) = - “dy = -2 | = 8b
£ul7) 2073, Jo a6 dx o Jo ar dx - (8b)

”m ]

which is compared with the ¢,(7) from Eq. (8a). Excellent
agreement was obtained.

Some useful comparisons can be made by calculating results
using the simplifying assumption that the transient tempera-
ture distribution remains uniform across the layer. The emit-
tance for this case is called ¢, and is derived in Ref. 10,
Interface reflectivities are included to account for internal
reflections, and p, = p,. = p,  is the same at the inside of
both boundaries

1 — 2E.xp,)

= nyl - — S Ds 9

€ = N( Po) 1 —~ 2p, . Eixp) 9

For ¢,.(r) = ¢, the integration from T, (0) = 7T, to T,(7)
of the heat balance given prior to Eq. (8b) vields

T (UT, = 1,7) = (1 + 3e,7) (10)

Then using ¢,,(8) = ¢,07T}(0), the instantancous energy flux

from a layer at uniform. but time varving. temperature is

qu{mVoT! = e, (1 + 2e,7) ** (1)

Numerical Solution Procedure

To derive a transient solution procedure for Eq. (4). the
method in Ref. 5 is further developed to include a refractive
index greater than 1. To advance in time, trapezoidal inte-
gration over a small Ar gives the change in ¢ in terms of
Ao as

(7137 oy At | (ar Lt
r ot 2 ar/, ., ar/,
(12)
The second derivative at 7 + A7, that corresponds to the

index # + 1. is written in terms of A and 1 at 7 (index n) by
the identity

At a1 8, AL g,
( ) oy Do (13)
Nl

. kil . Al . b = - s + - F
aX? axX- aX- axX: aX-

At each X the R(m + A7) =
R(7) = R, by

R, . is expressed in terms of

IR
R,., =R, + ((—) (... — 1) (14)
dar

"

By substituting Eq. (4) into Eq. (12) and using Egs. (13) and
(14). an equation for &r = ¢, — 1, 1s obtained as

AT (dR At a°
— =) - = Ar
[1 3 (ar)” 2 Vaxru

At
= - R N
AT [N (HXZ)” ,,:I (15)

Since all terms in Eq. (15) are at the time corresponding
to the index n, this subscript is omitted in what follows. The
i subscript is used to specify the X location. where { = | at
X =0,andi = M at X = 1. Variable AX increment sizes
are used across the layer, with AX, and AX extending in
the negative and positive directions about each X,. The second
derivative in Eq. (15) is then represented as

(ﬂ) _ 2, B 2,
aX?/ AX(AX; + AX, ) AX,AX,
+ 2,
AX, (AX, + AX,)

lsi=M (16)

Relations are now developed for obtaining Ar, at the grid
locations across the layer at time 7,. This gives the temper-
atures for all X, at 7 + A7 by using 1, , = 1, + Az, at each
X,. Eq. (16) is substituted into Eq. (15) to give

e [ ()
AX, (AX; +AXx, )y 2\,

ATN Ar - ATN A
AX AKX, CAX(AX +AX)

s { 2N L (AX; + AX, ) {
= AT -
iAX,‘ + AX, |Ax, AX;AX, :

\

L .
AX, :l R,} (17a)

This applies at the interior points 2 =/ = M — 1. To account
for the zero temperature derivative at each boundary. Eq.
(17a) has a special form obtained by letting the temperature
at a mirror image grid point be equal to the value at the first
grid point away from the boundary. Then fori = 1, Eq. (17a)
1s modified by having the value at the fictitious point i = (
be 1, = t,, and letting AX, = AX /. This gives fori = |,
and similarly fori = M

1 + —A—T (95) + ATN A, — ATV At
2 \aor/,  (AX)) oAX ) -
2N
= e — 17b
ATl:(Al\/{)w( ) Rl] ( )
AN AT ( aR ) AN
- Ar,  +|1+=[—] + -1 A
(AX ) = [ > \ar), T ax ‘,)J for

2N
=aAr|——
[(AX\,)-- v

+

L

+

= ly) - Ru:l (17¢)
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Equations (17a-17¢) provide a tridiagonal array for Ar, . ..
Aty

b ¢ Al s
a. .- Ar, s
) : . : - : (18)
Cyy oy Ary Sar
ay by, Ay, bXY;
where
AN
a4, = ———— . - 20 M-
AX, (AX, + AX,)
B AN
TGN,
Ar (IR AN
by =1+ 3 (f_) + T )
2 \ar/, AX))
; R’ AN
O
2 \ar /), (AXAX))
R AN
h'u =1+ ?(L) - PR
2 Ny “ (AX u)
o _XT.‘\Lv
o (AX )
ATN
¢ = ki RIETIF A VR

T AN (AX +AX)

2N
s, = At [—*(M’; S - R{]

\ N - (‘Ax; +AX, )
s, = -
CT ST AX ¢ AX, |AX AN AKX,
] o R 2= M- 1
AX '
iy = A =N (1 = hy) - R
Sa T AT (AX ) Mo Ar) v

The aR/at is needed at each X, for the b, coctticients. Using
R(X, 7)in Eq. (3. aRlar|, = (aR/at| ()i(avarl ). which gives

R

Py = 4kt (X, T)

A
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where
dC (1) . o anX. 1) ] ) )
= Nk, | XLy ——— 1 Eu(k,A) dAX
dr Jo a7 \
dC.(+ o anX.
d‘(' ) 8np K, { (XD —(J—’ Efx(1 — X)) dX
7 ar .

The tridiagonal array in Eq. (18) 18 solved using the well-
known algorithm."' 2 The A7, at each X, is added to each 4,
vilue to advance to the next time increment.

To evaluate R(X) and aR/or|  in the matrix coefficients
requires an accurate integration method. Since E((0) — =,
special treatment is needed as X7 approaches X. The integral
of £, 1s — F..and E(0) = 1. and so the integration is eval-
uated analytically for a very small region near the singularity
with 7% or * equal to its value at X. This is shown in Ref. 4
to provide accurate results. Gaussian integration is used for
the integrations away from the singularity. Values of the func-
tions at the unevenly spaced points in the Gaussian subroutine
were obtained from the grid point values by cubic spline in-
terpolation. By trving various numbers of grid points it was
found that 50 AX increments across the laver gave accurate
results. The increment size was small adjacent to cach bound-
ary where 10 increments with AX — 0.01 were used. A var-
table time ncrement was used with the A7 — 0,005 or 0.0025
initially. and then gradually increased during the calculation
as the rate of temperature change decreased.

Results and Discussion

Transient Temperature Distributions

The solution vields transient temperatures starting from an
initially uniform temperature. Typical temperature distribu-
tions are in Figs. 2a-2¢ for optical thicknesses x,, = 2.5, and
20. These results are for the himit of zero heat conduction
N = 0_and so they show the maximum influence of radiation
during transient cooling. From svmmetry. only half of the
layer is shown. Euach part of Fig. 2 gives temperature profiles
at three dimensionless times during the transient. For cach
time the three temperature distnbutions show the effect of
refractive index for o = 1, 1.5, and 2. The horizontal dot-
dash line at cach time s computed from Eq. (10). It is the
temperature obtamed by assuming the temperature profile
remains uniform with X. but s a function of time throughout
the transient. The #, used in Eq. (10) for & Taver at umtorm
temperature is a function of refractive index and optical thick-
ness as given by Eq. (Y) and Table 1. The p,,, in Eq. (9)is a

) /d Jor b . . d 1.7 . R ! ar (Y 7
5 ( L) E.(kpX) + g..(7) Efw (1 - X)I) * 4"VK1'J - 7) ! p ) Ex, | X0 = X)) dX”
2 dr dr 0 ar .
- (19)
at( X, 1)
aT

The ar( X, T)/o7 is obtained during the solution from the finite
difference representation of Eq. (4). The dernvatives of g,
and g, in Eq. (19) are evaluated from relations in Eq. (5).
This gives

dC, (1) dC (7)
dg, {7}  dr gy
dr 1 — A4 (20)
dC.(7) dC(7)
dg, (7)  dr T dr
dr 1 — A,.A,

function of 1 given by the Fresnel relations in Ref. 92 the dot-
dash lines in Fig. 2 are forn = 1.5

The taver is mitially at uniform temperature 7. When the
transient begins. the laver is subjected to cold surroundings
(7. <= 1)) and the outer portions cool more rapidly than the
intertor. For a small optical thickness as in Fig. 2a. the tran-
stent temperature profiles are fairly uniform and the results
using the uniform temperature assumption provide an ap-
proximation for the transient temperature level. When the
optical thickness is large as in Fig. 2¢. the profiles have a large
variation across the laver. and with N = 0 the temperatures
near each boundary change rupidly with X.
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Table 1 Emittance values for a layer at uniform temperature, £, (n. &,

n K, = | K, = 2 = S Kpn o~ 10 K, = 20
i 0.7806 0.9397 0.9982 1.0000 1.0000
1.5 0.8157 0.8853 0.9076 0.9082 0.9082
2 0.7927 0.8283 0.8391 0.8394 0.8394
2.5 .7518 0.7720 0.7780 0.7781 0.7781
3 0.7078 0.7201 (1,7237 0.7238 0.7238
1. O T
N
= e T 0
% ~ 0.25 =01 |
- - o |
= < 0.9 ©
= = '
¢ g :
3 —
® 2 0.8 0 1
e o 1.0 0.1
: = ®
h
o 2
?I " O' 7 ~
2 ° c1-
s T 2 o O
_____ = CIr I le] 2
€ 06F Y5 2 25—
e c 0.6 © 4
£ : N=0 OE’
0.5 L 4 L Kp=5
0.0 0.1 0.2 0.3 0.4 0.5 0.5 L : - :
a) Dimensionless coordinate, X = x/D 0.0 0.1 0.2 03 04 05
1o a) Dimensionless coordinate, X = x/D
. T T T T
7=0 "
- T 1.0 T ;
~ 0. 25 =0 N ¢
g femee - . 0.03
< 0. < : ;
g o
s Z
3 -
s O <
; b
a 2
£ °
2 a
a £
2 I
i
< 0. To:
E @
a c
£
0' 5 . i L A = -
0.0 0.1 0.2 03 04 0.5 S e
b) Dimensionless coordinate, X = x/D i J

Dimensionless temperature, T(X,7)/T;

N=0
0

i

4 . . .
0.0 0.1 0.2 0.3 0.4 0.5
c) Dimensionless coordinate, X = x /D

Fig. 2 Effect of refractive index on transient temperature distribu-
tions in a layer for three optical thicknesses in the limit of zero heat
conduction N = 0. K,, = a) 2, b) §, and c) 20.

0.5 1 * :
0.0 0.1 0.2 0.3 0.4 0.5

b) Dimensionless coordinate, X = x/D

Fig. 3 Effect of conduction-radiation parameter on transient tem-
perature distributions for a layer with refractive index n = 1.5 and
two optical thicknesses. K,, = a) 5 and b) 20.

The effect of refractive index is to make the profiles more
uniform as # is increased. By comparing results for n = | and
2 it is evident that the refractive index can reduce the am-
plitude of the temperature variation by a factor of 3 or 4. This
is attributed to internal reflections from the boundaries that
tend to distribute energy across the layer.

The effect of heat conduction on the temperature profiles
is shown in Fig. 3 forn = 1.5. When there is heat conduction
(N > 0). the conditions of the present problem imposc a zero
temperature gradient at cach boundary. In Fig. 3a for x,, =
S.avalue of N = 0.1 provides enough heat conduction to
significantly reduce the temperature gradient in the region
near the boundary. and the amplitude of the temperature
distribution is reduced about in half. Results for additional N
values are in Fig. 3b for a larger optical thickness. x,, = 20.
Except for very near the beginning ot the transient. the pro-
files become rather uniform for N greater than about 0.3.
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Transient Mean Temperature

The transicnt mean temperature of the layer is in Fig. 4a
for zero conduction (N = 0), which shows the maximum
radiative effect during transient cooling. Resuits ure for three
optical thicknesses and various refractive indices. The lowest
curve {(labeled optimum) has the maximum possible cooling
rate: it is for a black layer that is always at uniform temper-
ature. When «;, = 2 the temperature profiles in Fig. 2a are
somewhat uniform. The cooling curve forn = 1in Fig. 4ais
above the optimum behavior because the laver is not thick
enough to act as a black layver. When n is increased there are
two effects. The external retlectivity of the boundaries is in-
creased that decreases the layer absorptance and, hence. its
emittance. The temperatures are also raised near the bound-
aries as the temperature profiles become more uniform: this
increases emission. Since the profiles for x,, = 2 are already
rather uniform, the first effect is dominating and there is a
decrease in cooling rate when n s increased from 1 to 2. For
Kk, = 20 (solid lines on Fig. 4a) the low temperatures near
the boundaries relative to the much higher interior temper-
atures during the transient (see Fig. 2¢) reduce the cooling
effectiveness. and cooling is much slower than for the opti-
mum case of a black layer at uniform temperature. Increasing
the refractive index increases the cooling rate by making the
temperature profiles more uniform. The effect of i is oppuosite
to that for x,, = 2.

For the results in Fig. 4b there is heat conduction with N
= 0.1. Compared with N = 0, the temperature profiles for

1. 00 T T

0.95

0.90F N
0.85 ¢t "‘\‘1\ .
.80} NN 1 1
0.75 DN

0.70 + RN T N

Mean temperature, T,(7)/T;
Iy

0. 60 -
0.0 0.4 0.8 1.2 1.6 2.0 2.4

a) Dimensionless time, 7

1. 00 T ‘ T

0. 80F

0.70

Mean temperature, To(7)/T,

N=0. t

0.0 0.4 0.8 1.2 1.6 2.0 2. 4
b) Dimensionless time, 7
Fig. 4 Effect of refractive index and optical thickness on the transient

mean temperature of a layer during cooling: a) zero heat conduction,
N = 0 and b) conduction-radiation parameter. N = 0.1.

N = 0.1 are more uniform as in Fig. 3. Transient cooling is
enhanced as a result of increased temperatures near the
boundaries, and the curves in Fig. 4b move closer to the
optimum results. For these particular conditions the etfect of
n decreases with increasing x,,. which is opposite to the be-
havior in Fig. 4a. When «,, = 20. there is very hittle effect of
refractive index.

A way to present the transient variation in mean temper-
ature in more detail to provide quantitative information is by
forming a ratio of transient values with results when the tem-
perature remains spatially uniform throughout the transient
[T(7) independent of X]. This is the ratio T, (7)/7T(7) of
values from Fig. 4a or 4b to those from Eq. (10). For con-
ditions where this ratio is close to one, Eq. (10) can be used
to calculate approximate transient mean temperatures. For
other conditions the ratio can be used in conjunction with
Eq. (10) to obtain accurate estimates of 7,,(7). Since the ratio
extends over a moderate range, values can be interpolated
for other values of the parameters. Results for «,, = 20 are
in Fig. 5. The ordinate is 1.0 for N — = for any finite N the
T, (7)is always larger than T, (7). For a small optical thickness
the layer temperature distribution remains fairly uniform
throughout the transient. As a result, for «,, = 5. a figure
similar to Fig. 5 shows that 7, (7) is a few percent above 7,,(7).
unless 7 is less than 1.5 and N is less than 0.1, Hence, for
kp < 5. Eq. (10} can be used in many instances to obtain
an approximation for the instantaneous mean temperature.
Similar results for k,, — 10 show that for N == 0.1 agreement
with Eq. (10) is within 5% for all n. For «,, = 20in Fig. 5.
the temperature ratio is close to one (within about 3% ) for

N > 0.3,

Transient Heat Loss

The instantancous heat flux leaving the laver is in Fig. 6
for the same parameters as in Fig. 4. The uppermost curves
in Figs. 6a and 6b are for the optimum case of cooling a black
layer at uniform temperature throughout the transient. As
discussed for Fig. da. increasing n in Fig. 6a increases the
cooling rate when «,, is large, but has the opposite effect when
&, i1s small. The smallest transient emission is for an optically
thick layer with # = 1. since the temperatures are decreased
near the boundaries as a result of transtent cooling. In Fig.
6b. for N = 0.1. the curves shift toward the optimum curve
as heat conduction makes the temperature profiles more uni-
form. There v very little effect of refractive index tor x,, -
10 and 20.

1. 24 T
N
s n
1.20+ ¢ ——~— o0.03 '
---- 0t
------- 0.3
1.

Ratio of mean temperatures, T,,(7)/T (1)

Dimensionless time, 7

Fig. 5 Mean temperature of a layer during transient cooling com-
pared with that for a layer cooling with a uniform instantaneous tem-
perature distribution; effect of refractive index and heat conduction
for x,, = 20.
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Fig. 6 Effect of refractive index and optical thickness on the transient
heat loss from a layer during cooling: a) zero heat conduction, N =
0 and b) conduction-radiation parameter, N = 0.1.

The ordinate in Fig. 7 is the instantaneous heat loss from
the layer given as a ratio to the values for a spatially uniform,
but time varying, temperature as obtained from Eq. (11):
these results are for k,, = 20. Since values from Eq. (11) are
easily calculated, the g(7) can be readily obtained from the
ratios given and can be interpolated for other parameters,
During the carly portion of the transient the rate of energy
loss is lower than for a layer with 7(7) independent of X. As
time proceeds some of the ratios become a little larger than
1. This is because the mean temperature has decreased more
slowly than for the uniform temperature case. Late in the
transient the mean temperature is large enough that the heat
loss exceeds that reached for the spatially uniform tempera-
ture layer at that time.

Transient Emittance

The transient emittance is the instantancous heat flux ra-
diated from one side of the layer divided by oT} (7). It is
calculated from values as in Figs. 4 and 6. Results for «,, =
20 and various n and N are in Fig. 8. Since the layer tem-
perature is initially uniform, the emittance at 7 = 0 is ¢, in
Table 1 or Eq. (9). The curves in Fig. 8 begin at these values,
For N— = conduction equalizes the temperature distribution
so that the emittance remains at £, throughout the transient;
for N = 0 there is radiation only. As the transient begins.,
the temperatures decrease near the boundary and the emit-
tance decreases rapidly since the radiation loss is smaller than

1.1 T T r T T

© -
O T ) L S

3
g nvalues =™
o —
)

= o9

)

®

£ oos

i

L°

B

e 0.7

<

o

2

£ 0.6

w

kp=20
0. L L L

5 s

.0 0.4 08 1.2 1.6 2.0 24
Dimensionless time, T

Fig. 7 Heat loss from layer during transient cooling as compared

with that for a layer cooling with a uniform instantaneous tempera-

ture distribution; effect of refractive index and heat conduction for
K, = 20.

1.0 = T T
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Emittance, £,,(7) = q(7)/aT4 (1)
o
~

xp=20

3 It
c.Q 0.4 0.8 1.2 1.6 2.0 2. 4

Dimensionless time, T

Fig. 8 Transient emittance of a layer during cooling; effect of re-
fractive index and heat conduction for k;, = 20.

that characteristic of the layer instantaneous mean tempera-
ture. As shown by the similarity solution in Ref. 7, for n =
I and N = 0, the transient emittance decreases to a steady
value that depends on the layer optical thickness; the present
results show that this behavior remains valid for n > 1. With
conduction present (N > 0), the temperature distribution
gradually becomes more uniform as the transient proceeds:
and as temperatures decrease, radiation becomes less impor-
tant and conduction begins to dominate. The transient emit-
tance then rises toward its initial value corresponding to a
uniform temperature laver.

Concluding Remarks

Transient solutions were obtained for a radiating and con-
ducting layer cooled by exposure to a cold vacuum environ-
ment. The layer has diffuse surfaces and a refractive index
larger than 1. A transient finite difference solution procedure
is used: computer times on a Cray X-MP are 2-3 min for a
complete transient solution. Transient mean temperatures and
heat losses were compared with analytical results for a layer
at uniform temperature at any instant during the transient,
and with the optimum case of a black layer at uniform. but
time-varying, temperature. There are two effects of refractive
index. One is that internal reflections help distribute energy
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within the layer. which tends to make the trunsient distri-
butions more uniform. This increases cmission by preventing
low temperatures near the boundaries. However, reflections
from the boundaries also tend to contain radiation within the
layer that reduces cooling for a larger n. For optically thin
lavers where the temperature distribution is already rather
uniform. the second effect dominates, and increasing n can
decrease the cooling rate. For larger optical thicknesses the
first effect is more important, and so increasing 2 augments
cooling by helping to prevent the transient temperatures from
becoming low near the boundaries.
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